SAIC-95/1029

Global Association System
Phase 2: Conflict Resolution

Design Document

G. Beall, R. Le Bras, W. Nagy, T. Sereno and H. Swanger

February 22, 1995

19960304 025

Science Applications International Corporation
10260 Campus Point Drive
San Diego, California 92121

DISTRIBUTION STAT DTIC QUaliTy (KEPECTED L

Approved for public release;
Distribution Unlimited

REPORT DOCUMENTATION PAGE

Form Approved
OMB No. 0704-0188

Public reporting burden for thiy cottection af informatinn 13 e4timated tO sverage | hour per response, sncludin,

qathening and mamtaining the data needed, and completing and reviewng the ollection of iInformation Send comments ¢
colfertion of 1nfoemation, including 1uggestions o1 reduang thiy burden 10 Washington readauiarters Services. Directorate Tor information O DO!

. . perations and Reports, 1215 jeld n
Davit Highway Suite 1204 Arkngton. V2 212004302 and 10 the Office of Manaqement and Budqet, Paperwork Aeduction Project (0704-0188), Washington, DC 205’01 {13 tetlerso

9 the time [Or reviewing iInstructions, tearching ennting data sovrces,
arding this burden estimate or any other aspect ot thn

2. REPORT DATE

22 February 1995

1. AGENCY USE ONLY (leave blank)

3. REPORT TYPE AND DATES COVERED
Technical Report Dec 34 -ma~95

4. TITLE AND SUBTITLE =
Global Association System Phase 2: Conflict
Resolution

S. FUNDING NUMBERS

- F08606-90-D-0005

6. AUTHOR(S)

G. Beall, R. LeBras, W. Nagy, T. Sereno and H. Swanger

7. PERFORMING ORGANIZATION NAME(S) AND ADORESS(ES)

Science Applications International Corporation
10260 Campus Pt. Drive
~ San Diego, CA 92121

8. PERFORMING ORGANIZATION
REPORT NUMBER

SAC
SABE-95/1029

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)

10. SPONSORING / MONITORING

(HQ AFTAC/TTR)

1030 S. Highway AlA
Patrick AFB FL 32925-3002

HQ Air Force Technical Applications Center

AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

123. DISTRIBUTION / AVAILABILITY STATEMENT

Approved for Public Release, Distribution Unlimited

12b. DISTRIBUTION CQDE

13. ABSTRACT (Maximum 200 word's)

This document describes the second phase in the development of a Global Association System to
perform automatic interpretation of seismic data to associate signals from a network of stations
and locate seismic events using a method similar to generalized beam forming [e.g., Ringdal and
Kverna, 1989; Taylor and Leonard, 1992; Leonard, 1993]. The major improvement over the first
phase is the implementation of a new method to resolve conflicts among phases that are associ-
ated with more than one preliminary event hypothesis. This task was performed by a separate
expert system called ESAL in the first phase [Le Bras et al, 1994a]. This document also
describes our design for the third phase of the Global Association System which will include the
association of non-defining secondary phases and late-arriving data.

T4. SUBJECT TERMS]
Global Association

Event Identification

GA
Design Documen

Conflict Resolution
t SAIC-95/1029

15. NUMBER OF PAGES
A6\

16. PRICE CODE

17. SECURITY CLASSIFICATION
OF REPORT

UNCLASSIFIED

18. SECURITY CLASSIFICATION
OF THIS PAGE

UNCLASSIFIED

19. SECURITY CLASSIFICATION
OF ABSTRACT .

UNCLASSIFIED

20. UMITATION OF ABSTRACT

Same’ as Report

NSN 7540-01-280-5500

Standard Form 298 (Rev 2-89)
Prescribed by ANSI Std 2)9-18
298102 .

(This page intentionally left blank.)

1.0 INOAUCHON «..oerieiieiieenieeee ettt ettt et see st et e s e s ess s se st e s e s as et e s se e e b e e st s esaeennesnens 1
1.1 BACKZIOUNAoorviriieiieiririeirte ettt st et s s as st b s et s st et et e e sensene 1

1.2 RePOIt OULLNE ...coueeriiiitiiiienniienicttnt ettt e s e sasenesae s 2
2.0 SYSLEM SUIMIMATY ..cocvieririiiriirieiceriniinieeiesnsisieseesessesssssesaessessssaestsssesaeesssasessssssssaessesssesssessenss 2
3.0 Conflict ReSOIUtION OVEIVIEWocoviirveerieiviesiierieriaseeseesseesseseessesssesssesssassssssassssesssesssesssasssns 4
KT QLN =003 5 1111 4 RSO OO ST OO RO P PPRRORRPROON 4

3.2 Data FIOW DIAGTAINScccevuieuirreieieierrenirteietitstesaesatstssesesseossessesasssessesssessessassesssonsons 5
3.2.1 Top Level GA Diagramueveeeiiiiiiieceiiiiininnineieiccnssiessesssesssssssssssssssasons 5

3.2.2 Data Flow Diagrams fOr GAGSSOCouuvueeeinuecuinieriecirscnsreesesstecessaessesesessseseesesssens 7

3.2.3 Data Flow Diagrams for GACONSIICE c.cocueecuieiuriinsieiinieenieeteee e sesee e 10

4.0 Detailed Description of Shared MOAUIESccoeiriiniiiiiiiiiiiiiiiiiicircrcee s 10
4.1 CIUSLET ADALYSIS «veerveeerienieiieerieerteereenteeteseesseee e et s st se e et ssesatesaessaesbs e st e saseebbeennenasessns 11
Q1.1 AIGOTIAML .ttt sttt bbb s s 11

4.1.2 Major Software COMPONERLSccceeeeeeurcrrreieniiririiiisiesssessssstssiesesssesssssssssesns 11

4.2 Association-Based Conflict RESOIULIONccccerviriieniieririeciitecciteeee et esee et 12
42,1 ALOTIIAM ..ottt et bt 12

4.2.2 EXAMPIE ..ot teteenescessan ettt st b bbb et 15

4.2.3 Major Software COMPORENLS cccerceeneeeireeseeireseeseessensersesstsseesseeseessessesssessessasses 18

4.3 Common Data STUCLUIEScccueeerveeirreeiierrieerreeetirteeresesseessessseessseessseessseseseesesasssessessseses 19
5.0 Design for the Association of Secondary Phases and Late Arriving Datacccooeveuennenene 21
5.1 Association of Non-Defining Phasescccccvvviniiiiiiniiniiiiiircciccecccneeneccenenes 21
5.1.1 Prediction and ASSOCIQtION Of PRASES ...cccovueeueeeeeieeeeeeeeeeeneneeeeee e seeeee e 23

5.1.2 Conflict RESOIULION oueeeeiiininiiiiceciiictie st e 25

5.2 Association Of Later PRASEScocceveeiieriirieireeierieestenteeceessee st e see e e e essee e s eseeesaesseaseans 26

5.3 Processing of Late-Arriving Data ..ot 28
5.3.1 Differentiated Handling of Data from Primary and Auxiliary Network 29

5.3.2 Efficient Construction of New Events from Late-Arriving Data 30

5.3.3 Constrained Refinement of Previous Events with Late-Arriving Data 31
REFEIEINCES ..evveiviiriicieecieeieeitiesete e e e e e tesbes s e st e ssee s et e sesbe st s e s ae s et st e e sessbeestseste st esnbesnesssaessnesssessnten 33
Appendix A: GAassoc and GAconflict Parameter Descriptionsccccoeeeeveeeineininicncennen. 34

Page i

List of Figures
Page
Figure 1. This figure shows the high-level processing and data flow for Phase 2 of
the Global Association System. Process flow is indicated by dashed lines
and data flow is indicated by solid lines. Note the parallel instances of GAassoc. 3
Figure 2. This figure illustrates the respective roles of GAassoc and GAconflict in
the resolution of conflicts within the Global Association System. GAassoc
resolves conflicts that arise during the processing of a single sector and time
step. All instances of GAassoc write to the same database tables.
GAconflict reads from those tables and the final event tables and resolves
both conflicts between sectors and those that arise between the current time
step and Previous tiINE SIEPS. ...ccvceciveecririrereeiertrstessessersereessessessessesteseessessrassassasssessans 4
Figure 3. Level 1 DFD for the GA Subsystem. The three functional units at this level
are GAcons, GAassoc and GACONICL.c..cooeviereeirimniiicteiee et 6
Figure 4. Level 2 DFD for GAassoc. The main functions of GAassoc are to form A
preliminary associations (2.1) and to locate events and resolve conflicts (2.2). 7
Figure 5. Level 3 DFD diagram for GAassoc. Preliminary events are formed by
associating the arrivals read from the database. Travel time, slowness and
amplitude information stored in the Beam point structures are used to
1dentify aSSOCIALIONS. ...eierveriieiiriirieiritrirerree sttt sttt s e e s s e st e s e e s ae e s sne e s neesane 8
Figure 6. Level 3 DFD diagram for GAassoc. Once preliminary events are formed,
they are located, analyzed for redundancy and conflicts between them are
resolved. Conflict resolution utilizes two distinct methods: event clustering
and association-based resolution (see Sections 4.1 and 4.2 for detailed
AESCTIPLIONS). +verveeurerereerrieretereeeesasetesseeree st e e esr e seeasbe s eseesanensesanesasesatssntenssassnensnesnessne 9
Figure 7. Level 2 DFD for GAconflict. GAconflict uses the same modules as
GAassoc to perform redundancy analysis and conflict resolution.ccccceceeeverneennene. 10
Figure 8. This figure shows the shape of the function Mi. The interval bounds, al and
a2, and the sign of the slope completely define Mi for each attribute.ccccceueeee. 13
Figure 9. Tlustration of association-based conflict resolution. Four events, A, B, C
and D, have three associated arrivals in conflict, a, b and d. Each square
represents an arrival. The number next to the square is the rank of the
association: O represents the best association for that arrival. The lines join

the same arrival associated with different EVENTS. ..ocvvveeeeviieeirieireeieeeeeeeeeereeeeirt e ereeeees 15

Page ii

Figure 10. Tlustration of the association-based conflict resolution procedure.

(a) Event A is selected and conflicts for arrival a are resolved. (b) Event B

is selected, and conflicts for arrival d are resolved. Event D is dissolved

during this process. (c) Event A is selected in the second iteration, and

conflicts for arrival b are resolved. All conflicts are resolved and three

EVENLS TEIMAIN. ..eoverurererierieriertenserstessesseestentessrestestsstesssseesasssesessssesssensestessessessensesssensesses 17
Figure 11. This figure shows the addition of GAmerge and GArefine and

elimination of EServer/ESAL in the high-level processing and data flow

for Phase 3 of the Global Association System. Process flow is indicated by

dashed lines and data flow is indicated by solid lines. Note that GArefine

can be run in parallel with the N instances 0f GAaSSOC.ccccvveeveeriirieecirereesennaene 22
Figure 12. Level 3 DFD diagram for GAassoc, starting with location. Prediction

and association of non-defining phases and a second pass through conflict

resolution have been inserted after the initial pass through conflict resolution. 24
Figure 13. DFD for GArefine. GArefine will share subroutines with GAconflict to

load data from the database and with GAassoc to predict and associate

phases, for location, outlier screening, and conflict resolution, and to write

t0 the database. ..ot e 27
Figure 14. This figure shows the different sets of event tables read and written by

the different GA processes. There is a single arrival table read by GAassoc,

GArefine and GAconflict. The Final_tables are read by GAassoc for

CONSEraint PUrpoSes ONLY.covieeiiiiiiiiiiiiiinie e s 30

Page iii

List of Tables

Page
Table 1: Major modules for CIUSter analysiS.........ccuvereerirerreiiniiiiciiieniecte et ste s esresee e eaeas 11
Table 2: Major modules for association-based conflict reSOIUtION........c.ceceeerrerierieiereerernrerennne 18
Table 3: Data structures used in GAassoc and GACONliCt.......ccceeveverieeierienverieniieeneeerereeenens 20

Page iv

1.0 Introduction

This document describes the second phase in the development of a Global Association System to
perform automatic interpretation of seismic data to associate signals from a network of stations
and locate seismic events using a method similar to generalized beam forming [e.g., Ringdal and
Kverna, 1989; Taylor and Leonard, 1992; Leonard, 1993]. The major improvement over the first
phase is the implementation of a new method to resolve conflicts among phases that are associ-
ated with more than one preliminary event hypothesis. This task was performed by a separate
expert system called ESAL in the first phase [Le Bras et al., 1994a]. This document also
describes our design for the third phase of the Global Association System which will include the
association of non-defining secondary phases and late-arriving data.

1.1 Background

In 1993, discussions began concerning the design of the International Data Center (IDC) and the
U.S. National Data Center (NDC) for the upcoming Group of Scientific Experts Third Technical
Test, called GSETT-3 (for an overview, see Kerr [1993]). The GSETT-3 experiment will be the
first demonstration of a global monitoring system that addresses the CTBT problem. In the early
discussions, the global network was envisioned to include as many as 60 primary stations (mostly
arrays) to provide continuous data, and up to 200 auxiliary stations to provide waveform seg-
ments upon request. The volume of data (~10 Gbytes per day) and number of events (300-400 per
day) were estimated to be approximately a factor of five to ten times greater than encountered
from existing global networks.

SAIC performed an engineering study to assess whether existing seismic monitoring systems
could be modified to handle these expected data volumes. The software components of ADSN
and IMS were considered. The conclusion of this study was that the primary bottleneck would be
the automatic association and location program, ESAL [Bratt et al., 1991, 1994]. Performance
analyses indicated that ESAL’s execution time scaled roughly with the square of the detection
density. This was considered unacceptable since extrapolation to the estimated data volumes for a
CTBT monitoring network indicated that ESAL would not be able to process the data in real
time.

To address this concern, SAIC proposed a phased replacement of ESAL with a new Global Asso-
ciation System that would allow some of the tasks to be run in parallel:

* Phase 1: Station processing and preliminary event formation were replaced with new
modules called StaPro, GAcons and GAassoc. This hybrid system uses a method similar to
generalized beam forming for automatic association and event location [e.g., Ringdal and
Kverna, 1989; Taylor and Leonard, 1992; Leonard, 1993]. Conflict resolution and event
refinement are performed by ESAL [Le Bras et al., 1994a].

¢ Phase 2: Conflict resolution was moved into the Global Association System. ESAL still
associates secondary phases and late-arriving data. Shared modules for conflict resolution
were developed and implemented into GAassoc and GAconflict.

* Phase 3: This completes the replacement of ESAL by implementing the association of
secondary phases and late-arriving data in the Global Association System. This document
describes a design for this phase which has not yet been implemented (see Section 5.0).

Page 1

1.2 Report Outline

Section 2 gives a high-level description of Phase 2 of the Global Association System. Sections 3
and 4 describe our approach to conflict resolution and its implementation. Detailed descriptions of
the algorithms and diagrams representing the data flow are included. Section 5 describes the
design for Phase 3 which incorporates association of secondary phases and late-arriving data.

2.0 System Summary

This section provides a brief description of the main components of Phase 2 of the Global Associ-
ation System.

* StaPro - This module performs station processing. It analyzes detections and their features
to make preliminary seismic phase identifications. StaPro contains the same logic as ESAL
for this task, and it adds the ability to compute single-station location and magnitude
hypotheses. This information is used by GAassoc to screen detections from local events
with magnitudes less than a user-specified threshold. This module is considerably more
compact than ESAL, permitting each station to be processed independently and in parallel.

* GAcons - This module builds a global grid file containing the knowledge base for the
association process. Overlapping circular grid cells provide complete global coverage,
including depth cells in areas where deep seismicity is known to occur. The information
contained in the grid file includes travel time, slowness, and azimuth bounds, and
information on the probability of detection for each station in the network. A graphical user-
interface is available to review and edit the grid values.

* GAassoc - This module identifies event hypotheses using an exhaustive search over all grid
cells. It uses the information in the grid file produced by GAcons to identify detections that
are consistent with a particular event hypothesis. Multiple instances of GAassoc can be run
in parallel with each instance forming event hypotheses for a different sector of the Earth.
The preliminary bulletin produced by GAassoc will not contain conflicting associations (i.e.,
phases that are associated with more than one event hypothesis) within any sector, but can
contain conflicting associations between sectors and with previously processed time
intervals. These conflicts are resolved by GAconflict.

* GAconflict - This module resolves conflicts between events formed in different sectors in
the current time interval by different instances of GAassoc and between the events formed
in the current time interval and events formed in previous time intervals.

» EServer/ESAL - These modules are used in Phase 2 to refine the event hypotheses formed
by the Global Association System by associating secondary phases and late-arriving data.
EServer is a data agent for ESAL that prepares ASCII input files from data read from a
commercial relational database management system (RDBMS). EServer also writes events
and associations determined by ESAL to the RDBMS. When Phase 3 of the system is
implemented, these functions of ESAL will be implemented within the Global Association
System.

Page 2

Figure 1 is a schematic view of Phase 2 of the Global Association System. StaPro, GAcons, and
EServer/ESAL have not changed much since Phase 1, and their roles are described by Le Bras, et
al. [1994a]. Enhancements to GAassoc and the new module called GAconflict are described in
detail in Sections 3 and 4.

LR A A A R A A A b A S e A A A A A A A A N

\ Task Controller \
N\ \ N \ \
\ \ D \ \
\ \
\ \
{, \
StaPro \ \
GAassoc(l) ?
N
Y Y Y

'-RDBMS

Figure 1. This figure shows the high-level processing and data flow for Phase 2 of the
Global Association System. Process flow is indicated by dashed lines and data flow is
indicated by solid lines. Note the parallel instances of GAassoc.

The Global Association System was developed on UNIX workstations under the Solaris 2.3 oper-
ating smem using the C programming language (ANSI-compatible). The current version uses an
Oracle™™ 7.1.3 RDBMS and can be ported to other commercial databases that are supported by
the Generic Database Interface (GDI) developed by SAIC [Anderson et al., 1994]. StaPro uses
CLIPS Version 6.0 to provide run-time configurability of station-specific rules. CLIPS is a knowl-
edge-based macro language which is supported by NASA. ESAL is programmed in the ART
(Automated Reasoning Tool) expert system shell from Inference Corporation.

Page 3

3.0 Conflict Resolution Overview

3.1 Algorithm

This section is an overview of the implementation of conflict resolution in the Global Association
System. An arrival is in conflict when it is associated with more than one preliminary event
hypothesis. Conflict resolution is performed in both GAassoc and GAconflict. GAassoc may pro-
cess data from the whole Earth in a single instance, or it may process data from different sectors
of the Earth in separate instances running in parallel. In either case, it will resolve conflicts that
arise during processing of a single sector. Conflicts can also arise between sectors or between
event hypotheses from the current time interval and previous time intervals. These conflicts are
resolved by GAconflict. Their roles are illustrated in Figure 2.

Sector 1, time step T1

Intra-sector conflicts ; Inter-sector and inter-time

| step conflicts
|
[

GAassoc Sector 1 I
|

Conflict resolution : GAconflict

|

Conflict resolution
between Sectors 1 and 2

and time step T1 and
previous time steps

GAassoc Sector 2 GA_tables

Conflict resolution
Sector 2, time step T1

Final_tables

Figure 2. This figure illustrates the respective roles of GAassoc and GAconflict in the
resolution of conflicts within the Global Association System. GAassoc resolves conflicts
that arise during the processing of a single sector and time step. All instances of
GAassoc write to the same database tables. GAconflict reads from those tables and the
final event tables and resolves both conflicts between sectors and those that arise
between the current time step and previous time steps.

GAassoc and GAconflict use the same two methods to resolve conflicts. The first method uses a
clustering algorithm to identify and resolve conflicts between large events that share a high per-
centage of associated arrivals. Remaining conflicts are resolved by constructing a metric to rank
the events that associate the same arrival. This metric includes a measure of the quality of the
event solution and the goodness-of-fit of each association.

Page 4

3.2 Data Flow Diagrams

This section presents the data flow diagrams (DFDs) for three main components of the Global
Association System: GAcons, GAassoc and GAconflict. At any level, the DFD provides a view
of the system as an interaction between modules. The bubbles represent functional elements of
the system at the specific level of decomposition. The solid arrows indicate data exchange
between modules and data stores, which are indicated by heavy horizontal lines. Data stores
include database tables, external data files, and internal data structures. The crosshatched arrows
indicate data input by the user. Important subroutines called within the various modules are noted
between square brackets.

The lower-level data flow diagrams for GAcons have not changed from Phase 1 so they are not
included in this report [see Le Bras et al., 1994a]. The diagrams for GAassoc, which have been
modified to include the new modules for resolving conflicts, are presented in Section 3.2.2. The
new GA conflict program uses the same modules as GAassoc to resolve conflicts, so only the top-
level data flow diagram is included in Section 3.2.3.

3.2.1 Top Level GA Diagram
The Level 1 Data Flow Diagram (DFD) for the GA Subsystem is shown in Figure 3. It shows the

Page 5

interaction of the three main programs, GAcons, GAassoc and GAconflict.

GAassoc user input GAcons user input
\ \
N \
\ \
arrival db table : Travel Time Tables \
$ \

~ I
S Nrveseer
» N Seismicity
S

Preliminary
Event
Formation Grid Builder
GAassoc GAcons

2.

1.

GA_tables

origin_ga, origerr_ga, assoc_ga Precomputed static db tables
Beam point-station
information

Final_tables
origin, assoc, origerr

Conflict
resolution
between sectors
and time intervals
GAconflict

3.

Figure 3. Level 1 DFD for the GA Subsystem. The three functional units at this level are
GAcons, GAassoc and GAconflict.

GAcons produces one or several grid files that contain the knowledge base used by GAassoc to
perform the automatic association of arrivals. It only needs to be run when the network or grid
characterization changes and is not part of the real-time processing system.

GAassoc uses arrival data for the current time interval and the grid information produced by
GAcons to generate self-consistent sets of associations. Sets that pass various acceptance tests

and the process of conflict resolution become preliminary events. These are written to an interme-
diate set of tables that we call the GA_tables. Several instances of GAassoc may be run in paral-
lel, each on a different sector or region of the Earth. Each instance writes its results to the same

intermediate set of tables.

GAconflict resolves conflicts in the GA_tables that arise from parallel processing of multiple sec-

Page 6

tors. Results are written to a separate set of database tables which we call the Final_tables.
GAconflict also reads the Final_tables to identify conflicts between the new events in the
GA_tables and events from earlier time intervals, which are in the Final_tables. The events that
are in conflict with a new event are removed from the Final_tables, and they are reprocessed by
GAconflict with the events from the GA_tables. The Final_tables do not contain any conflicting
associations.

3.2.2 Data Flow Diagrams for GAassoc

The three data flow diagrams for GAassoc illustrate the modular structure of the program. Most
modules use the same data structure, called the Driver structure (see Figures 4, 5, and 6). Figure 4
is a high-level view of GAassoc. The functional units are (2.1) preliminary association, and (2.2)
event location and conflict resolution.

Precomputed
——— Beam point-station
arrival db table information

Form
Preliminary
Associations

2.1

Locate events
and
resolve conflicts

22

Driver structures
SRR

GA_tables
origin_ga, origerr_ga, assoc_ga

Figure 4. Level 2 DFD for GAassoc. The main functions of GAassoc are to form
preliminary associations (2.1) and to locate events and resolve conflicts (2.2).

Figure 5 is a detailed expansion of the first part of GAassoc where data are read and preliminary

Page 7

associations are formed.

Precomputed
Beam point-station

information [GA_file()]

arrival db table

Extract
arrival list

Read
from file

[GAarrival(] 211

Station_arrival structure /

Beam point structures

2.12

Identify [GA_restrict_phases()]

and
corroborate
Drivers

2.14

Restrict
phase list

213

[GA_assoc_loop()]
[GA_partial_redundancy()]
[GA_split_analysis()]
[GA_check_hitcount()] Driver structures

Beam point structures

[GA _split_analysis()]
[GA_check_hitcount()]
[GA_redundancy_check()]
[GA_prelocation_probdet()]

Driver structures

Figure 5. Level 3 DFD diagram for GAassoc. Preliminary events are formed by
associating the arrivals read from the database. Travel time, slowness and amplitude
information stored in the Beam point structures are used to identify associations.

Figure 6 is a detailed expansion of the second part of GAassoc where events are located and con-

Page 8

flicts are resolved.

Driver structures

Locate
and confirm
preliminary
events
2.2.1

[GA_locate()]
[GA_network_prob()]

Driver structures

[GA _redundancy_check()] [GA _cluster()]

[GA_assoc_based_CR()]

Redundancy

analysis Resolve
229 conflicts
- 223

Driver structures Driver structures

~

GA_tables
origin_ga, assoc_ga, origerr_ga

Write to
Database

224

Figure 6. Level 3 DFD diagram for GAassoc. Once preliminary events are formed, they
are located, analyzed for redundancy and conflicts between them are resolved. Conflict
resolution utilizes two distinct methods: event clustering and association-based
resolution (see Sections 4.1 and 4.2 for detailed descriptions).

Page 9

3.2.3 Data Flow Diagrams for GAconflict

Figure 7 shows the data flow diagram for GAconflict. Note that GAconflict uses the same mod-
ules as GAassoc to perform redundancy analysis and conflict resolution.

GA_tables
origin_ga, origerr_ga assoc_ga

[GA_build_drivers()]

Build

prelim
structures
3.1

Final_tables Driver structures

origin, origerr, assoc
L}

[GA _redundancy_check()]
Redundancy

analysis
32
[GA_cluster()]

Driver structures [GA _assoc_based_CR()]

\» [GA_locate()]

[GA _network_prob()]

Resolve
conflicts
34

Driver structures

7

Write to
Database

3.5

Final_tables
origin, origerr, assoc

Figure 7. Level 2 DFD for GAconflict. GAconflict uses the same modules as GAassoc
to perform redundancy analysis and conflict resolution.

4.0 Detailed Description of Shared Modules

This section describes the two methods used in the Global Association System for conflict resolu-
tion. The first method is a special purpose method which uses a clustering algorithm to identify
and resolve conflicts between large events that share a high percentage of associated arrivals (Sec-
tion 4.1). The second method is a general purpose method which uses an association-based mea-

Page 10

sure to resolve the remaining conflicts on the basis of the quality of the event solution and the
goodness-of-fit of each association (Section 4.2).

4.1 Cluster Analysis

The first method in conflict resolution uses a clustering technique to identify and resolve conflicts
between large events that share a high percentage of associated arrivals. It was introduced to
reduce the problem of splitting large events. GAassoc frequently generates numerous small varia-
tions of a large event. Experience has shown that association-based conflict resolution has diffi-
culty distinguishing between these variations and tends to split a large event into multiple smaller
events. Cluster analysis provides a means of identifying a group of similar preliminary events and
reducing that group to the single “best event.” We define the “best event” as the one with the larg-
est number of defining phases; the size of the error ellipse is used to break ties. The clustering
method is only applied to clusters of large events (i.e., many defining phases) so that we have a
high-confidence that all members represent the same event. The application of this method is con-
trolled by the user parameter do_clustering.

4.1.1 Algorithm

The key steps of the clustering algorithm are:

» Select the preliminary event with the largest number of defining phases that has not already
been clustered. This number must be greater than or equal to a user-specified limit
(cluster_min_ndef). If several events have the same number of defining arrivals, then select
the one with the smallest error ellipse. Call this event the “best event.”

* Form a cluster by identifying all other preliminary events that have at least a specified
percentage (cluster_min_pct_overlap) of associations in common with the “best event.”.

These associations must be time-deﬁningl. The phase identifications may be different for
the different preliminary events.

» Dissolve all preliminary events in the cluster except for the “best event.”

» Continue as long as there are preliminary events with a sufficient number of defining phases.

4.1.2 Major Software Components

The major software components for cluster analysis are summarized in Table 1.

Table 1: Major modules for cluster analysis

Subroutine Prototype Short Description of Function File name
int Performs event cluster analysis on preliminary events (or GA_cluster.c
GA_cluster Drivers) with 2 cluster_min_ndef defining data. We start
(Driver **dr_anch, with the event with the largest number of defining data and
int cluster_min_ndef, search through the remaining events to remove those con-
double taining association sets with at least
cluster_min_pct_overlap | cluster_min_pct _overlap of the smaller set.

1. Time-defining means that the arrival time was used in the calculation of the event location.

Page 11

4.2 Association-Based Conflict Resolution

Conflicts that remain after cluster analysis are resolved by an association-based method. Each
arrival that is associated with more than one event hypothesis is assigned to the event that maxi-
mizes a weighted product of the goodness-of-fit and a measure of the quality of the event solution.
The goodness-of-fit is based on time, azimuth, slowness and log amplitude residuals. The event
quality is based on the number of defining observations, size of the error ellipse, distance to the
nearest station, and probability of detection, plus a factor to help retain small events. The test is
applied iteratively and all events are relocated and all measures recomputed after each disassocia-
tion of an arrival. The application of this method is controlled by the user parameter
do_association_based_conflict_resolution.

4.2.1 Algorithm

The conflicting arrival is assigned to the event hypothesis that maximizes the quality measure:

(1-a
L;=F;-0/'"")

where F;; is a measure of the goodness-of-fit of the j™ arrival to the i event, 0, is a measure of
the quality of the i™ event, and a is a user-specified weighting factor (master_tradeoff_weight). If
a is zero then the goodness-of-fit of the arrival to the event solution will be ignored, and conflicts
will be resolved in favor of the event with the highest quality. Conversely, if a is set to one then
conflicts will be resolved only on the basis of goodness-of-fit. Both Fj; and Q; are normalized
between 0 and 1, so L;; also varies in this range.

Goodness-of-Fit

The goodness-of-fit of an assoc1at10n F;;, is based on the time, azimuth, slowness, and log ampli-
tude residuals when available. A x value is computed as:

= 2 ((d;—m) /o.) ()

where dﬁ is the observed data, m; is the theoretical data and O; 1s the estimated standard deviation
of the j*! datum. The x is unbiased by using the equation:

x> = - Ntot/ (Ntot - Ndata) 3

where Nrot is the total number of data used to compute location and magnitude in the event
hypothesis minus the number of model parameters in location and magnitude, and Ndata is the
number of data for the arrival in question. The quantity Fj; is the probability corresponding to this
unbiased xz value.

Page 12

Event Quality

The quality of an event, Q,, is the normalized weighted sum of two terms:

Qi= (b'Q1i+C'Q2i)/(b+C) 4)

The first term is a measure of the quality of the event solution based on the number of defining
phases, the size of the error ellipse, the distance to the nearest station, and the probability of detec-
tion. The second term increases the event quality measure if it is likely that the event would be
dissolved if the association is removed from it (i.e., if the number of defining phases is small). The
user-specified factors b (event_likelihood_weight) and c¢ (dissolved_event_weight) allow adjust-
ment of the relative weight given to these two terms.

The first term, Q;, is a measure of how likely the event is to be real. It is computed as the follow-
ing normalized weighted sum:

NA NA
Q, = zwi'Mi/Zwi ®)

i=1 i=1

where NA is the number of event quality attributes, w; is the user-specified weight assigned to
each attribute, and M; is a measure between zero and one of how likely the event is to be real
based only on the i attribute. The M; are approximated as linear ramps from 0.0 to 1.0 between
interval bounds that are specified for each attribute (Figure 8).

al a2

Figure 8. This figure shows the shape of the function M;. The interval bounds, a1 and
a2, and the sign of the slope completely define M; for each attribute.

The event quality attributes used to compute Q; are:

1 - The number of defining phases (ndef). If an event has a large number of defining phases
then it is more likely to be real than if it has a small number of defining phases. The interval
bounds for M; are specified by the user-parameters: ndef_no_confidence_bound (default is
3) and ndef_high_confidence_bound (default is 10). The weight is specified by the user
parameter ndef_weight (default is 1.0).

2 - The size of the error ellipse. If the error ellipse is small then there is reasonable network
coverage and the event is more likely to be real than if the error ellipse is large. The interval
bounds for M; are specified by the user-parameters: smajax_no_confidence_bound (default
is 500 km) and smajax_high_confidence_bound (default is 10 km). The weight is specified
by the user parameter smajax_weight (default is 0.8).

Page 13

3 - The distance to the nearest station. If the nearest station is close, then the event is more
likely to be real than if it is far. The interval bounds for M; are specified by the user-

parameters: dnear._no_confidence_bound (default is 90 km) and
dnear_high_confidence_bound (default is 10 km). The weight is specified by the user
parameter dnear_weight (default is 0.5).

4 - Probability of detection. If the network probability of detection estimate is consistent with
the set of stations that detected the event, then the event is likely to be real. The interval
bounds are applied to the ratio of the residual used in the probability of detection event
confirmation test and its standard deviation [Le Bras et al., 1994a]. They are specified by the
user-parameters: probdet_no_confidence_bound (default is 3.0) and
probdet_high_confidence_bound (default is 1.0). The weight is specified by the user
parameter probdet_weight (default is 0.7).

An additional location-specific attribute, seismicity, is planned to be added to the above set. An
event is more likely to be real if it is located in an area characterized by high seismic activity. The
current program does not use this attribute.

The second term in Q;, O,, is provided to reduce the possibility of dissolving a small event. It is
defined in terms of the number of defining phases as:

0, = 0.0 if the number of defining arrivals larger than or equal to
ndef_not_likely_to_dissolve_event (default is 6).
0, = 1.0 if the number of defining arrivals is less than or equal to

" ndef_which_will_dissolve_event (default is 3).
0, is linear between these two bounds.

Procedure

The iterative procedure for applying the metrics described above to resolve conflicts is described
in this section. It is initialized by computing Q; for all events and L;; for each of the conflicting
associations. The following tasks are performed once for each event with conflicting associations:

* Task 1: Rank all conflicting associations based on their quality measure, L;;. The rank will

be set to zero for the event with the highest L;;, and it will be greater than zero for all other
events. Select the event with at least one conflicting association whose rank is zero that has
the highest proportion of defining associations that it is likely to keep after conflict

resolution. This proportion 1s (n;+n,)/ndef, where n; is the number of defining associations
that are not in conflict, n, is the number of conflicting associations with rank equal zero, and

ndef is the total number of defining associations for the event. Ties are broken by selecting
the event with the highest event quality, Q;.

» Task 2: For the current event, select the conflicting association with the highest quality
measure, Lij, and disassociate this arrival from all other events.

» Task 3: Relocate all events that have lost an association and reapply the event confirmation
criteria. Abandon any events that no longer satisfy these criteria and disassociate all of their
arrivals. Recompute Q; and L;; for all events that have lost an association and re-rank all
affected associations. Return to Task 2 if the current event has remaining conflicting
associations with rank equal zero.

Page 14

Several iterations through this procedure may be required to resolve all conflicts. The example
below shows such a case.

4.2.2 Example

Figures 9 and 10 illustrate a simple example of association-based conflict resolution. We start
with four events with conflicting associations of three arrivals. Figure 9 shows the events, their
associated arrivals, and the conflicts. The arrivals are labelled ¢, B and 8. We assume for simplic-
ity in this example that the ranking of associations is not modified after events are relocated.

Event B
1
o
Event A 3 Event C
0 0 Event D 2|®
0 0
0 ORe |1 0
0
@ |0
_ 0 o
1| &g
0 B 0
0 n

Figure 9. Tllustration of association-based conflict resolution. Four events, A, B, C and
D, have three associated arrivals in conflict, o, p and 8. Each square represents an
arrival. The number next to the square is the rank of the association: 0 represents the
best association for that arrival. The lines join the same arrival associated with
different events.

Two iterations of the procedure described above are required to resolve all conflicts in this exam-
ple. Figure 10 illustrates the results at intermediate stages. The following describes the first itera-
tion, with tasks identified corresponding to the procedure described above:

* Task 1: Event A is selected.
* Task 2: Arrival o is disassociated from Events B and C.
* Task 3: Events B and C are relocated, and both still pass event confirmation (Figure 10a).

* Task 1: Event B is selected.

* Task 2: Arrival 0 is disassociated from Event D. -

* Task 3: Event D is abandoned because it does not satisfy event confirmation. Conflicting
associations of arrival B are re-ranked (Figure 10b).

Page 15

Event C is not selected in the first iteration because it does not have any conflicting arrivals with
rank equal to zero. Event D is not selected because it is dissolved during the processes of resolv-
ing the conflicts with Event B. The second iteration must resolve only one conflict:

» Task 1: Event A 1s selected.
* Task 2: Arrival B is disassociated from Event C.
» Task 3: Event C is relocated (Figure 10c).

All conflicts are resolved after these two iterations and Events A, B and C remain. The re-ranking
after each conflict is resolved is an important step in the procedure. In this example, arrival 8
would have been disassociated from Event A if the ranks were not updated.

Page 16

(@)

Event B
0
0 Event C 1
0 ® Event D .
0 0 ore 0 1
1
0 = L] | @ \J
0
1| &4 0 0
0 \B\Z Event A 0
0 ® | | ofe] @ 0|®|0 Event C
0 0 0
0 0
(¢) 0 0
Event B 0
ojel__ B
0 0 \Or
Event A 0 5 0 @
ole| Ol e Event C
0 0 3 '
|
0 ; .
0 |
|
0 0
0
all conflicts resolved

Figure 10. Tllustration of the association-based conflict resolution procedure. (a) Event
A is selected and conflicts for arrival o are resolved. (b) Event B is selected, and
conflicts for arrival 8 are resolved. Event D is dissolved during this process. (c) Event
A is selected in the second iteration, and conflicts for arrival B are resolved. All
conflicts are resolved and three events remain.

Page 17

4.2.3 Major Software Components

The major software components for association-based conflict resolution are listed in Table 2.

Subroutine Prototype

int

GA_assoc_based_CR

(Driver **dr_anch,
Ev_Confirm *ev_confirm,
CR_params cr_params,
Locator_params *loc_params,
Site *sites,

Netwrk *net_sta,

int num_sites

)

int

GA_main_CR_loop

(Driver **dr_anch,

Driver *dr_cur,

Ev_Confirm *ev_confirm,
CR_params cr_params,
Locator_params *loc_params,
Site *sites,

Netwrk *net_sta,

int num_sites

)

double
GA_event_quality
(Driver *dr,
CR_params cr_params

)

void

GA_arrival_quality
(Driver **dr_anch, double
exp_wt

)

Table 2: Major modules for association-based conflict resolution

This table lists the software modules for association-based conflict resolution with a short description of
their function and the name of the file where they reside.

Short description of function File name

Performs association-based conflict resolution on GA_assoc_based_CR.c

preliminary events as controlled by various
weighting values.

Performs Tasks 2 and 3 of the association-based GA_assoc_based_CR.c

conflict resolution procedure for each selected

event.
Computes the event quality measure, Q. GA_assoc_based_CR.c
Computes the quality measure, L,j. GA_assoc_based_CR.c

Page 18

Table 2 (cont.).

Subroutine Prototype.

double

GA_member_scaling

(double sample_value,

double low_conf_value,

double high_conf_value,

Bool
larger_value_is_more_importa
nt,

Bool log_scaling

)

void
GA_rank_arrivals
(Driver **dr_anch)

Short description of function. File name.

GA _assoc_based_CR.c
Scales a given input value according to user-speci-
fied confidence settings established in the struc-
ture, CR_params. This is a normalized scaling
(i.e., 0.0 to 1.0).

GA_assoc_based_CR.c
Ranks conflicting associations according to their
conflict resolution quality measure: the best qual-
ity association will be in first index position, i.e.,
0. This first entry has special significance by being
the best fit, and is therefore, given the name, “win-
ner”. The remaining “losers” will follow indexed
from 1 to number of conflicting associations.
These “losers” can potentially become “winners”,
if some of the “winners” are in events which are
subsequently dissolved.

4.3 Common Data Structures

The data structures used in Phase 2 of the Global Association System have been upgraded to sat-
isfy the needs of the conflict resolution modules. This primarily involves the Driver data structure
which is now used throughout the system, from the early stage of the association loop within
GAassoc to the final stage of inter-sector and inter-time step conflict resolution within GAcon-
flict. Table 3 shows the details of the Driver data structure and a related structure.

Page 19

Table 3: Data structures used in GAassoc and GA conflict.

This list is limited to the Driver structure and the accessory assoc_CR structure, which are
central to both GAassoc and GAconflict. Refer to Le Bras et al.[1994a] for details on
other data structures.

Structure name and definition. Short description of elements. File name.
typedef struct driver Driver Driver or generator. This is a structure formed to contain GA _Driverh
{ preliminary event information. It contains pointers to static

Beam_pt *bp;
char

ph_id[GA_PHASE_NAME]

StaPt *stpt;
Phas_Inf *phspt;

Sta_Ar *sta;
Arrival_Inf *ar;

Cor_Sta *csta;
double or_time;
double or_tmin;
double or_tmax;
double dr_mag;
double gfact;

double cr_ev_qual;
double res_norm;

double weight;

int num_obs;
Origin *origin;
Origerr *origerr;
Assoc *assoc;
Assoc_CR *assoc_cr;
Driver *next;

}

typedef struct assoc_cr
Assoc_CR

{
Arrival_Inf *ar;
double chi2_fit;
double cr_ar_qual;
int rank;

}

station and arrival information and to the beam point where
it has been formed.

Pointer to Beam-Point.

Phase ID for Driver arrival.

Pointer to station info for beam point.

Pointer to phase information for this Driver-phase-beam
point.

Pointer to station arrival structure for first arrival station.
Pointer to Arrival_Inf structure for first arrival station given
Driver.

Pointer to corroborating stations and arrivals list.

Origin time for the Driver.

Min. origin time for the Driver.

Max. origin time for the Driver.

Driver magnitude.

Association quality factor. This is the combined probability
for all corroborating phases to be associated with this Driver.
Event-based quality as measured by conflict resolution, Q;.
Network-based probability of detection residual norm, mea-
sured as residual/sigma, used in event confirmation.
Current “weight” of Driver obtained by adding all weights
for associated arrivals, used in event confirmation.

Total number of arrivals for this Driver, including Driver.
Standard CSS DB 3.0 origin table.

Standard CSS DB 3.0 origerr table.

Standard CSS DB 3.0 assoc table (of length, num_obs).
Association-based conflict resolution info.

Pointer to next Driver in linked list.

Contains association-based quantities used in resolving con- GA_Driver.h
flicts.

Arrival_Inf pointer.

Chi-squared fit level for arrival.

CR arrival quality measure.

Quality-based rank of given Driver/arrival pair. 0 is
“keeper”; 1 is highest quality “loser”; etc.

Page 20

5.0 Design for the Association of Secondary Phases and
Late Arriving Data

There are several functions provided by ESAL in Phase 2 of the current Global Association Sys-
tem which must be implemented in Phase 3 to support the bulletin generation requirements of the
ADSN, IDC and PNDC. In this section we describe the operational requirements and a design to
meet them within the Global Association System. The requirements include:

* Association of non-defining phases
» Association of later phases that arrive after the initial time interval
* Processing of late-arriving data
- Differentiated handling of data from primary and auxiliary networks
- Efficient construction of new events from late-arriving data
- Constrained refinement of previous event solutions with late-arriving data

Each of these tasks is described in the following section. Most of these can be handled by aug-
menting GAassoc and GAconflict. Refinement of previous event solutions by the association of
phases that arrive after the initial time step, however, will require a new module, GArefine. A
second new module, GAmerge, will be necessary to allow efficient processing of late-arriving
data. The high-level processing and data flow for the complete system, including these two mod-
ules, are shown in Figure 11.

The main addition to the current system will be a set of shared libraries which will allow run-time
prediction and association of phases to an existing event using its computed location and magni-
tude. These libraries will be used in GAassoc to add non-defining phases to located events that
have passed conflict resolution and in GArefine to add late-arriving data to previously formed
events. This functionality will be described in Section 5.1.

5.1 Association of Non-Defining Phases

GAassoc currently only associates phases that are required to define an event and compute its
location (Defining Phases). It is important, however, to also identify and associate non-defining
phases in order to reduce the number of false alarms that are constructed from these phases. These
phases may also be important for subsequent event characterization.

It will be necessary to predict and associate non-defining phases in three different processing time
frames:

1 - prompt arrivals within the same processing interval as the defining phases
2 - prompt arrivals within a later processing interval than the defining phases
3 - late arrivals

The term “prompt arrivals” is used to refer to data that are in the database at the time of the initial
GA processing; “late arrivals” refer to data that were not in the database at the time of the initial
GA processing and whose association requires reprocessing of the data. We focus on the first time
frame here; differences in the processing of the second and third time frames will be discussed
below.

Page 21

L A A A A A A A A A A A A A A R A A b A A A A A A A A A AN

\
\ Task Controller \
N \ \ \ N \
) & ¥ oy 2 \
\ N \
1 N \ N E
| \
StaPro w E
| GAmerge N \
; N
\
Y Y

'RDBMS

Figure 11. This figure shows the addition of GAmerge and GArefine and elimination
of EServer/ESAL in the high-level processing and data flow for Phase 3 of the Global
Association System. Process flow is indicated by dashed lines and data flow is indicated
by solid lines. Note that GArefine can be run in parallel with the N instances of
GAassoc.

There are several possible choices for when and how to predict and associate prompt non-defining
phases in the same time interval as the defining phases. The simplest option would be to predict
and associate them at the same time and in the same manner as the defining phases. However, this
would be very inefficient. Non-defining phases do not contribute to, and are not required for, the
formation and confirmation of an event. Since the number of preliminary events is dramatically
reduced by location outlier, event confirmation, and conflict resolution tests, it is much more effi-
cient to delay the prediction of non-defining phases until after these tests are applied This effi-
ciency gain is expected to outweigh the benefit of using precomputed values stored in the grid. In
addition, the event magnitude can be used to restrict which phasezds are predicted, and this will
obviously be more accurate after the final event location is computed.

Another option would be to add the non-defining phases in a separate process after all defining
phases for a time step have been processed and merged. This is the model used in Phase 2 of the
Global Association System. 1t is efficient and modular, but it reduces the level of parallelization that

1. 'We use the term phaseid to refer to a phase identifier, e.g. P. A phase is an arrival with an assigned
phaseid.

Page 22

is made possible by running multiple GAassoc processes on separate sectors. Instead, we prefer a
model] that predicts and associates non-defining phases within each sector after event formation
and intra-sector conflict resolution are complete, but before the results from each sector are
merged. Conflicts generated by associating non-defining phases will then be resolved in a second
pass through conflict resolution within GAassoc. This will require adding two steps to GAassoc
after conflict resolution: (1) Predict and associate non-defining phases, and (2) Resolve conflicts
generated by these associations (compare Figure 12 to Figure 6). These new steps are described in
the following two subsections.

5.1.1 Prediction and Association of Phases

Prediction and association of phases to previously-located events will be required for association
of prompt non-defining phases (in the same time interval as the defining phases or in a later one)
and late-arriving data. Consequently, this functionality will be implemented as a set of shared
libraries which will be used by GAassoc and GArefine.

Restrictions on the Prediction and Association of Phases

Amplitude tables are generally not available for secondary phases, so amplitude consistency tests
cannot always be applied. Instead, a set of related heuristic restrictions will be imposed as is done
in ESAL. First, the distance range at which phaseids can be associated, and the magnitude of the
event to which they can be associated, will be restricted. These restrictions are expressed as:

Phaseid, PID, will be predicted for event, EV, at station, STA,
if and only if the magnitude (mb) for EV is greater than or equal to minmag(PID)
and the distance from EV to STA is between mindist(PID) and maxdist(PID)

It may eventually be desirable to store these restrictions in the grid, but the restrictions currently
used in ESAL are neither source nor path-specific. It will therefore be more efficient to store them
in a separate structure accessible by phaseid, magnitude and distance. These data will be read
from a UNIX file that can be merged with the dist_depth_range_file used by GAcons.

The prediction of non-defining phases will also be restricted according to the setting of the current
user-parameter, primary_required_for_secondary. When this restriction is set, non-defining
phases will only be predicted for stations that have an associated defining phase. In addition, user-
parameters will control restrictions such as: a secondary phase may not be associated unless azi-
muth and slowness data are available (e.g. secondary_requires_slow_az), and a later phase which
has been grouped by StaPro may not be associated with an event unless the earliest phase in the
group has also been associated (e.g. earliest_stapro_phase_required).

Prediction of Phaseids

Predictions will be based on the computed event location and error ellipse. This will be done
using a prediction routine like the one used by ESAL and standard travel time tables. The routine
used by ESAL is similar to the one used by GAcons to calculate travel times for the grid, but it

uses the error ellipse size and orientation to calculate origin uncertainties. These routines do not
currently include the depth uncertainty for fixed-depth locations, but this can be addressed ini-
tially by modelling the depth uncertainty as a linear function of the depth (e.g. with user parame-
ters prediction_depth_model_constant and prediction_depth_model_slope). For a given event,
theoretical travel times, azimuth, slowness, and their uncertainties will be predicted for the non-

Page 23

Driver Structures

Locate and
confirm
preliminary
events

Driver Structures

Redundancy
Analysis

Driver Structures

Resolve
Conflicts

Driver Structures

Predict &
Associate
Non-defining
Phases

Driver Structures

Resolve
Conflicts

Write to /
\ origin_ga,assoc_ga,origerr_ga

Driver Structures

Database

Figure 12. Level 3 DFD diagram for GAassoc, starting with location. Prediction and
association of non-defining phases and a second pass through conflict resolution have
been inserted after the initial pass through conflict resolution.

Page 24

defining phaseids (specified by a user parameter, e.g. nondefining_phases) that satisfy the restric-
tions described above.

For a given event, station and phaseid, residuals will be computed for every phase which is not
already associated with the event, has an arrival time within a time window of the theoretical
travel time, and has an initial phaseid that matches or can be changed to the predicted phaseid
(forward_transformation_list). Association will be based on a chi-square test of the location resid-
uals (time, azimuth and slowness) normalized by the RMS sum of the data standard deviation
(e.g. deltim) and the origin uncertainty computed for the error ellipse. The chi-square sum will be
compared to the user parameter chi_outlier used in the location outlier test. The time window for
prediction will be based on the maximum time residual that could pass the chi-square test.

Association of Phases

It is possible that more than one arrival will fit the predicted values for a single phaseid, or that
one arrival will fit more than one phaseid. To resolve this ambiguity, we will collect and order all
possible associations for a station (e.g. in tuples like (arrival, phaseid, fit)). The phase with the
best chi-square fit will be accepted and all other preliminary associations for the same arrival or
phaseid will be removed from the list. This will continue until all ambiguities are resolved. The
remaining phases will be associated with the event.

5.1.2 Conflict Resolution

Association of non-defining phases will not change event parameters so it will not be necessary to
relocate or reapply event confirmation criteria after association. However, conflicts may be gener-
ated between the newly associated phases and other non-defining or defining phases. It will, there-
fore, be necessary to make a second pass through conflict resolution to identify and resolve such
conflicts, as shown in Figure 12. If a non-defining phase is removed due to conflict resolution,
nothing more must be done. If a defining phase is removed, however, redundancy and event con-
firmation tests will need to be reapplied and surviving events must be relocated.

The conflict resolution algorithm described in Section 4.2 will need to be modified slightly in
order to work correctly with non-defining phases:

* The x2 term in Fj; will need to be modified to incorporate the origin uncertainty

characterized by the error ellipse in the scaling of the residuals.

* The amplitude component of the x2 term in F; will generally not be available.

* The Q, term, characterizing the likelihood that the event will be dissolved if the phase is
removed, will need to be modified to be dependent on whether the phase in question is

defining or not.
» If a removed phase is non-defining, relocation of the event and reevaluation of the conflict-

resolution quality measures is not required.

Page 25

More experience with the conflict resolution algorithm will be necessary to determine if the fol-
lowing changes are desirable:

* Include non-defining phases in the initial clustering algorithm.
* Add aterm to Q; which allows non-defining associations to contribute to the confidence that

an event is real.
5.2 Association of Later Phases

GAassoc processes arrivals in a series of overlapping time intervals and only considers arrivals

within a single intervall. Currently ESAL handles the association of any phases that arrive after

the end of the time interval in which an event is formed. To include this functionality in the Glo-
bal Association System we will introduce a new module called GArefine. This module will share
the code used in GAassoc to predict theoretical travel times for non-defining phases.

The purpose of GArefine is to refine and augment previously confirmed events, not to signifi-
cantly revise them or to generate new events; all new events will still be constructed by GAassoc.
Data will be read from and written to the Final_tables, which are the output of GAconflict.
Phases in the current time step which might be associated with a previous event will be predicted
and associated if appropriate. Internal conflicts will be resolved within GArefine, while any con-
flicts generated with the results of GAassoc processing of the current time step will be resolved
during subsequent processing by GAconflict. During processing of prompt data, the main con-
cern is association of non-defining phases since the size of the time interval is generally selected
to allow inclusion of all defining phases. However, the approach we select must be flexible
enough to allow the association of defining phases as well.

The general processing flow of GArefine is shown in Figure 13. The first step of GArefine will
be to query the Final_tables to determine which previous events could predict a missing phase in
the current time step. As described above, prediction of each phaseid will be restricted to a speci-
fied distance/time range and minimum event magnitude. Prediction will also be restricted to those
phaseids for which there is not already an association. Only those previous events which, based
on their magnitude and origin time, could predict a missing phase in the current time step will be
loaded into GArefine. They will be loaded into standard GAassoc Driver structures using the
utilities developed in GAconflict to load previous events for conflict resolution. All arrivals asso-
ciated with these events will also be loaded, plus all arrivals in the current time step. Note that
arrivals for the lookback before the current time step will not be loaded since they have been fully
processed in an earlier time step. Consequently there will be no overlap between the new arrivals
and those already associated. If there are no eligible previous events then GArefine will exit.

Defining phaseids (specified by phases) will be predicted and associated first. As in GAassoc,
which missing phaseids should be predicted for each station will be determined based on the
event magnitude, origin time, and association set. The theoretical travel times, azimuth, slowness,

1. A time interval is defined by three parameters: the start_time, the end_time, and the
lookback. We define the “current time step” as the period from start_time to end_time; the
“current time interval” is the current time step plus the lookback, which precedes the cur-
rent time step.

Page 26

_ Final_tables:)
origin,origerr,assoc,arrival . /T 0. restricted
previous events
and arrivals

Station_arrival structures

Static files: ———

phaseid magnitude restrictions

Driver structures

Station_arrival structures Predict and

associate
defining phases

Travel-time tables

Driver structures

Locate and
Outlier
Screening

Travel-time tables

Driver structures

Conflict
Resolution

R
Driver structures
L]
Station_arrival structures Predict and
associate
non-defining
Travel-time tables phases
.]
Driver structures
R

Conflict
Resolution

Driver structures

Write to

database

Final_tables:
origin,origerr,assoc

Figure 13. DFD for GArefine. GArefine will share subroutines with GAconflict to
load data from the database and with GAassoc to predict and associate phases, for
location, outlier screening, and conflict resolution, and to write to the database.

Page 27

and their uncertainties will be predicted for those phaseids using the event location and error
ellipse and residuals for all unassociated phases will be computed within a time window of the
theoretical travel time which has an initial phaseid that matches or can be changed to the pre-
dicted phaseid. Note that phases which are already associated will not be predicted since that
would be repeating previous work. Conflicts between potential associations will be resolved as in
GAassoc.

All defining phases which pass the association tests will be associated at once, followed by relo-
cation and outlier screening as performed in GAassoc, with two differences:

» If one of the original defining phases is the worst outlier, the worst newly-associated phase
will be removed instead.

 If the locator fails (e.g. fails to converge) during this process, the original event will be
restored.

These differences are motivated by our intention to refine and not revise the original events. An
alternative to this sequence would be to associate new phases one at a time, followed by reloca-
tion and reprediction. This might be a more stable sequence for refining a small, poorly con-
strained event, but it would in general be more computationally expensive since it would require a
relocation and reprediction for each associated phase.

After all events have been relocated and screened for outliers, conflicts will be identified and
resolved as in GAassoc. Since only new arrivals are predicted, the only conflicts will be between
different associations of the new arrivals. As in outlier screening, conflict resolution will be
restricted so it does not degrade the original event.

Once all defining phases have been associated and conflicts among them resolved, non-defining
phases will be predicted and associated, followed by a second pass through conflict resolution.
This will proceed exactly as it did in the association of non-defining phases within GAassoc.

Results will be written back to the Final_tables. It will be necessary to delete the previous events
from these tables before the revised ones are written out.

After GAassoc is complete for all sectors and GArefine is complete for previous events, GAcon-
flict will be run to resolve any remaining inter-sector and inter-time-step conflicts, as shown in
Figure 11. The algorithm described in Section 4.2 to identify conflicts with previous events will
need to be extended to include conflicts with non-defining phases. Otherwise, the conflict resolu-
tion algorithm will be the same as described above for a single time step when non-defining asso-
ciations are included.

5.3 Processing of Late-Arriving Data

Processing of late-arriving data implies reprocessing an interval which contains data that was not
present when the data was first processed. A couple of distinct scenarios must be supported to sat-
isfy the operational requirements of the ADSN and IDC. In the ADSN, the initial processing has
generally been reviewed and corrected by an analyst. These results must be preserved when add-
ing late data. In one scenario, late arrivals may be associated with previously-formed events (Pre-
vious Events) but the original set of associations and event parameters (location and magnitude)
may not be changed and no new events are to be formed. In a second scenario, late arrivals may

Page 28

be associated and event parameters recalculated, but the original set of associations may not be
changed. New events may be formed as long as they do not involve previously-associated arriv-
als. In the IDC, the Previous Events have not been reviewed by an analyst, but the late data con-
sists primarily of data from an auxiliary network that has been requested to refine the Previous
Event locations. In that case, the primary data will take precedence over the auxiliary data to
ensure the effect is refinement and not revision. Furthermore, because of the large volumes of data
involved, this process should be as efficient as possible. Obviously, it would be very inefficient to
completely reprocess the interval to allow association of a small number of late arrivals.

The processing flow will follow the model used in the processing of prompt data, with addition of
a preliminary step to merge previous results into the current processing (Figure 11). As in the pro-
cessing of prompt data, GArefine will be used to augment previous event solutions and GAassoc
will be used to generate new ones.

The first step in late processing will be to process the late arrivals through StaPro to obtain
phaseids, as it is in the current hybrid system. The Process Manager [Given et al., 1993] keeps
track of intervals of data at each station which have not been processed by StaPro. Only these
intervals will be processed during late processing.

The next step will be to merge the results of an earlier run into the current database. The previous
results for a given time step must be merged before either GAassoc or GArefine are run to make
them available to constrain the processing. Although this function could be combined with GAre-
fine, separating it into a separate process which will be run before GArefine and GAassoc for a
given time step will allow GArefine to be run in parallel with GAassoc; we will call this module
GAmerge. We assume a database model where GAassoc writes its results to one set of database
tables, called the GA_tables, and GArefine and GAconflict write their results to a separate set of
tables, called the Final_tables. We further assume that the results of the previous run are in a third
set of tables, called the Previous_tables, and that there is a single self-consistent arrival table
which contains all of the arrivals for these three sets of tables. GAmerge will copy origin,
assoc, and related records from the Previous_tables to the Final_tables when the first associa-
tion of the event lies in the current time step (i.e., the arrival time is between start_time and
end_time). This database model is shown in Figure 14.

5.3.1 Differentiated Handling of Data from Primary and Auxiliary Network

The IDC utilizes the concept of a primary and auxiliary network of stations. Data from the pri-
mary network are used to define an event while data from the auxiliary network are used only to
refine the event location. It will therefore be necessary to support the following constraints:

* Drivers may only be formed from arrivals at stations in the primary network.
* Only arrivals at stations in the primary network contribute to event confirmation tests.

The first constraint could be implemented in GAcons by restricting the stations that are consid-
ered when determining First-arrival stations [Le Bras et al., 1994a]. This, however, would require
rebuilding the grid if a station is moved from one network to the other. A more flexible approach,
which could be used for both constraints, would be to read the stations’ network membership
from the affiliation database table during initialization of GAassoc. A user parameter, €.g.
primary_network, would identify the primary network, and all arrivals at stations not in that net-
work would be labelled as auxiliary arrivals. This would allow an efficient run-time restriction on

Page 29

Previous_tables GAmerge Final_tables

GAassoc
sector /

Final_tables GA_tables

GAassoc
sector N

Final_tables GA_tables

RN — T
.]]
Final_tables Final_tables
| .]
]
I ———
GA_tables
Final_tables
S L]

Final_tables

Figure 14. This figure shows the different sets of event tables read and written by the
different GA processes. There is a single arrival table read by GAassoc, GArefine and
GAconflict. The Final_tables are read by GAassoc for constraint purposes only.

the generation of Drivers and a common mechanism to be used to restrict the calculation of the
Weighted-Count and Network-Probdet event confirmation tests [Le Bras et al., 1994a]. If a
primary._network is not specified then the restriction will not be applied.

5.3.2 Efficient Construction of New Events from Late-Arriving Data

It is, of course, possible to produce events incorporating late-arriving data by simply reprocessing
all of the data, including the late arrivals, through GAassoc. We would like, however, to improve
the quality and efficiency of the processing by taking advantage of the earlier processing and anal-
ysis. To meet the operational requirements of the ADSN and IDC for the processing of late-arriv-
ing data described earlier we must support two specific cases. In one case we will lock
associations that have been reviewed by an analyst so they cannot be changed, for example, by
being associated with another event. In the second case we will restrict event generation to require
the use of late-arriving data. This will avoid the wasted effort of constructing and reevaluating
preliminary events that have already been considered. Both of these cases can be accomplished by
modifying the GAassoc module.

Page 30

The first case will be implemented by simply restricting the arrivals that are loaded into GAassoc
to not include any that are associated to an analyst-reviewed event. This, of course, requires iden-
tifying analyst-reviewed events. One way to do this would be to use the origin auth field. If
GAassoc writes a distinct auth field (e.g. starting with ga_auth_prefix) when it forms new ori-
gins, then an origin auth field that was not written by GAassoc would indicate that the origin
had been reviewed by an analyst. This constraint will be controlled by the user parameter
lock_analyst_associations. If it is not applied, all arrivals will be loaded. No other change will be
required for this case.

In the second case we wish to avoid wasting time reconsidering preliminary events that were
already evaluated during prior processing. We will do this by requiring preliminary events to
associate late arrivals. There are two ways to accomplish this. One is to form preliminary events
in GAassoc as normal, but to immediately abandon them if they do not associate a late arrival.
This would be significantly more efficient than completely reprocessing the data, but not as effi-
cient as a more restrictive approach that restricts the Driver used in GAassoc to be a late arrival;
this is the approach we recommend. This behavior will be controlled by a user parameter, e.g.
restrict_drivers_to_late_arrivals.

Late arrivals will be identified by using the author field of the arrival table. Late-arriving data can
be thought of as data which has been processed by StaPro but which has not been fully processed
by GAassoc. StaPro currently updates the author field of arrivals it has processed. If we modify
GAassoc to update the author field of an arrival at the completion of its final pass through GAas-
socl, we can then identify a late arrival as one where auth equals stapro_auth.

GAassoc will require a couple of modifications to allow it to make full use of a late arrival as a
Driver because it normally assumes the Driver is the first arrival from the event. GAassoc
restricts a Driver to be an arrival at a station identified in the grid as a First-arrival station [Le Bras
et al. 1994a] and to have a detection time between start_time and end_time. In addition, only
phases arriving after the Driver are considered as possible corroborating phases. These restric-
tions will have to be relaxed and all phases be considered since the Driver may be any defining
phase in this case. These modifications will only apply when Drivers are restricted to be late
arrivals.

When GAassoc is restricted in its use of arrivals for Drivers, either to late or primary data, it will
check the database for eligible arrivals before any other processing or loading of data and will ter-
minate if none are available.

5.3.3 Constrained Refinement of Previous Events with Late-Arriving Data

Event refinement will be handled by GArefine and will progress basically as described for
prompt processing and shown in Figure 13, with the identification and loading of events that
might predict a new phase in the current time step. An important difference, however, will be that
only late, rather than all, arrivals in the current time step will be loaded. If there are no late arriv-

1. An arrival will be processed by GAassoc two or more times, depending on the ratio of
the lookback to the time step duration. The final pass can be identified by having the
arrival time between start_time and end_time

Page 31

als in the current time step then GArefine will exit. The events that are loaded will be checked to
determine if they have been reviewed by an analyst and will be marked accordingly; associated
arrivals will be marked similarly. Analyst-reviewed events and late, primary and auxiliary data
will be identified as described earlier.

As stated above, certain constraints may be applied to preserve the association sets and locations
of analyst-reviewed events. There may also be the constraint that the association of an auxiliary
arrival may not cause the disassociation of a primary arrival; these constraints will be controlled
by a set of user parameters, e.g. lock_analyst associations, lock_analyst_locations, and
prefer_primary_associations. These constraints will require the following modifications to GAre-
fine:

* When analyst locations are locked, no location or outlier screening will be done. Output to
the database will be modified so that input events will not be purged from the database but
will be updated instead. Specifically, new associations will be added to assoc and the
number of associated phases will be updated in origin if appropriate.

* When analyst associations are locked but the location is not locked, analyst-associated
arrivals may not be removed by location outlier screening. If an analyst-associated arrival is
an outlier and there is a GA-associated arrival, the latter will be removed instead. If an error
occurs during location (e.g. failure to converge) then the original analyst-reviewed event will
be restored.

* When primary associations are preferred, if a primary association is a location outlier and
there is also an auxiliary association, the latter will be removed instead.

The rest of GArefine will proceed as when processing prompt data, with one small change.
Although the original associations of an analyst-reviewed event cannot be in conflict, it will be
possible for a conflict to arise when a later phase is associated with both an analyst-reviewed and
an GA-produced event. We will therefore want to increase the event quality component of the
conflict resolution event quality measure, O, for analyst-reviewed events, probably to unity.

Page 32

References

Anderson, J., M. Mortell, B. MacRitchie, and H. Turner, Generic Database Interface (GDI) User
Manual, Tech. Rep. SAIC-93/1001 REV, Science Applications International Corporation, 1994.

Bratt, S., G. Beall, H. Swanger, F. Dashiell and T. Bache, A knowledge-based system for auto-
matic interpretation of seismic data to associate signals and locate events, Tech. Rep. SAIC-91/
1281, Science Applications International Corporation, 73 pp., 1991.

Bratt, S., G. Beall, H. Swanger, F. Dashiell and T. Bache, A knowledge-based system for auto-
matic interpretation of seismic data to associate signals and locate events, Tech. Rep. [in progress,
revised edition of SAIC-91/1281], Science Applications International Corporation, 1994.

Given, J., W. Fox, J. Wang and T. Bache, The Intelligent Monitoring System: Software Integra-
tion Platform, Tech. Rep. SAIC-93/1069, Science Applications International Corporation, 32 pp.,
1993.

Kerr, A. (ed.), Overview GSETT-3, Report prepared by the GSE Working Group on Planning, 9
pp., October, 1993.

Le Bras, R., H. Swanger, T. Sereno, G. Beall, R. Jenkins and W. Nagy, Global Association.
Design Document and User’s manual, Tech. Rep. SAIC-94/1142, 67 pp., 1994a.

Le Bras, R., H. Swanger, T. Sereno, G. Beall, R. Jenkins, W. Nagy and A. Henson, Global Associ-
ation Final Report, Tech. Rep. SAIC-94/1155, 28 pp., 1994b.

Leonard, S., Automatic global event association and location estimation using a knowledge based
approach to generalized beamforming, Proceedings of the 15th Annual PL/ARPA Seismic
Research Symposium, PL-TR-93-2160, 248-255, 1993.

Ringdal, F. and T. Kvarna, A multi-channel processing approach to real time network detection,
phase association, and threshold monitoring, Bull. Seismol. Soc. Am., 79, 780-798, 1989.

Taylor, D. and S. Leonard, Generalized beamforming for automatic association, Proceedings of
the 14th Annual PL/ARPA Seismic Research Symposium, PL-TR-92-2210, 422-428, 1992.

Page 33

Appendix A: GAassoc and GAconflict Parameter Descriptions

This appendix contains descriptions of the user-parameters for GAassoc and GAconflict. The
user-input to both programs is through command-line arguments. These arguments can be stored
in a parameter file, and the name of the file is specified on the program command-line (e.g.
GAconflict_par=GAconflict.par).

GAassoc and GAconflict share a number of modules and, therefore, a number of parameters are
valid for both applications. The following list of parameters is divided between GAassoc parame-
ters (A.1), GAconflict parameters(A.2) and shared parameters (A.3). Shared parameters are valid
for both applications. Refer to Le Bras et al. [1994a] for description of user-parameters for
GAcons. Also provided in this appendix are sample parameter files for GAassoc and GAconflict
(A4).

A.1 GAassoc User-Parameters
A.1.1 Database Interface and Input Files Parameters

gdihome:
Root directory location of GDI (Generic Database Interface) installation. Default is set based on
the GDI_HOME environment variable.

vendor:
Name of the database vendor (e.g., “oraclg”). Default is NULL.

server:
Name of the database server. Default is NULL.

constr:
Type of database tuple constructor. Default is NULL.

dalabase:
Name of the device where the database is located (e.g. “t:skrymir:dev6037”). Defaults to the set-
ting defined in the user environment (e.g. TWO_TASK environment variable). Required.

account.
Database account name. Required.

maxrecs:
Maximum number of records to read from the database. If -1, all records will be returned. Default

is 30000.

in-arrival-table:
Name of the input arrival table. The detections to be associated are read from this table. Station
processing should be run on the detections before using GAassoc. Required.

in-assoc-table:

Name of the input assoc table. The belief field from this table is read for each arrival. It is also
used to screen arrivals associated with local events with ML magnitude less than a user-specified

Page 34

value. Required.

in-origin-table:
Name of the input origin table. This is used to screen local events with ML magnitude less than a
user-specified value. Required.

in-origerr-table:
Name of the input origerr table associated with the input origin table. Required.

out-origin-table:
Name of the output origin table. This will contain the origin records for the preliminary events
formed by GAassoc. Required.

out-assoc-table:
Name of the output assoc table. This table contains the assoc records associated with the pre-

liminary events formed by GAassoc. Required.

out-origerr-table:
Name of the output origerr table. This table contains the origerr records associated with the pre-
liminary events formed by GAassoc. Required.

net: ,
Name of seismic network (e.g. GSETT3). Required.

minimum_ml_previously_determined:

Minimum local magnitude of events whose arrivals will be tentatively associated by GAassoc.
Arrivals that have been associated by station processing with local events of magnitude less than
this value are not considered for association. Default is 2.0.

input_path:
Path name to the directory where the input grid file produced by GAcons is located. Required.

input_file:
Name of input grid file produced by GAcons. This file contains the grid information to be used by
GAassoc in the forming of preliminary events. This file name must be specified.

table_path:
Path name to travel time and magnitude tables directory. Required.

atten_file:
Path name and file name for the attenuation tables used for probability of detection calculations.
Required.

mb_dist_depth_suffix:
Suffix for mb tables. Required.

A.1.2 Association Loop Parameters

start_time:
Epoch time of the starting time for analysis.

Page 35

end_time:
Epoch time of the end time for analysis.

lookback:

Time in seconds before the start time to include in the analysis. Events with origin time between
start_time-lookback and end_time-lookback are considered in the analysis. Arrivals between
start_time-lookback and end_time are read and considered in the analysis.

belief_threshold:
Threshold value for the belief field in the arrival table. If the belief (assigned by StaPro) is above
this threshold the phase identification cannot be changed by GAassoc.

phases:
Names of phases to be used in the association. This must be a subset of the phases used in
GAcons. Required.

primary_phases:
Names of phases to be considered “primary” phases. Required.

num_first_sta:
Maximum number of “first-arrival stations” to use from the grid file produced by GAcons. The
stations are ordered with the highest probability station first. Default is 10.

count_limit.

When the number of preliminary events formed in the association loop of GAassoc reaches this
limit, redundancy analysis, event splitting and event confirmation are performed before more pre-
liminary events are formed. This is an efficiency measure meant to recycle memory space before
a large portion of the physical memory is used-up. When memory and swap space are limited, set
this limit to a small number (e.g. 10000). Set this number to a very large number (e.g. 1000000) to
prevent the recycling from happening when sufficient space is available on your hardware.
Default is 10000.

freeze_arrivals_at_beam_points:

If this string is present in the parameter file, arrivals will be frozen at each beam point once asso-
ciated with a preliminary event. If this string is not present in the parameter file no freezing is per-
formed. The consequences of freezing the arrivals are that less preliminary event will be formed
and there is a chance (albeit small) that valid events will be missed. The preliminary events list
will be more exhaustive when no freezing is performed. Default is FALSE.

primary_required_for_secondary:

If this string is present in the parameter file, an arrival can be associated to a preliminary event
only when there is a corresponding primary phase from the same station already associated to that
event. Default is FALSE.

regional_S_phases:

List of regional S phases. A regional P phase cannot be associated with a grid cell at teleseismic
distance if station processing grouped it with a compatible S phase in the list of
regional_S_phases. Required.

Page 36

forward_transformation_list.

For each phase identified by station processing, this list restricts the phase identifiers (phaseids)
that it can be transformed into by GAassoc. The format for this parameter is a list of lists as in “(P
PKPdf Pn), (S Sn Lg Rg)”. The parenthesis-enclosed list contains the station-processing assigned
phaseid as its first member, followed by the phaseids that this phaseid can be transformed into by
GAassoc. If a phaseid is not present in that list, GAassoc is not allowed to modify the phase iden-
tification of a particular arrival into that phaseid. Phase identifications will be carried over from
station processing if no specific identification is made (e.g Tx not identified). Required.

sigma_time:

Sigma factor for time measurement uncertainty. This factor is multiplied by the deltim standard
deviation to determine the interval for the preliminary screening done during the search for cor-
roborating phases. Default is 3.0.

sigma_slowness:
Sigma factor for slowness measurement uncertainty (see the sigma_time description). Default is
3.0.

chi_limit:

Threshold value for the chi-square association test. This is used within the association loop to
determine if a corroborating arrival belongs to a preliminary event formed by a Driver arrival.
The default is 0.99, meaning that there is a 1 percent chance that the arrival belongs to the same
event as the Driver arrival, this event being located within the grid cell being examined.

A.1.3 Optional Processes Parameters

save_previous_tables:

A boolean variable to control overwriting of existing database tables. If TRUE, previously com-
puted database records will be saved; else, they will be removed. Under normal operating condi-
tions this should be set to FALSE (string should be omitted from parameter file). Default is
FALSE. '

redundancy._required:
If this string is present in the parameter file, a complete redundancy test is performed after the
association loop. This is done in the normal operating mode. Default is FALSE.

probdet_before_location:

If this string is present in the parameter file, a network probability test is performed prior to loca-
tion. Parameters for this test are defined by residual_over_sigma_max and max_obs_net_prob.
Default is FALSE.

probdet_after_location:

If this string is present in the parameter file, a network probability test is performed after location.
Parameters for this test are defined by residual_over_sigma_max and max_obs_net_prob.Default
is FALSE.

do_clustering:
If this string is present in the parameter file, clustering analysis will be performed. Default is
FALSE.

Page 37

do_association_based_conflict_resolution:
If this string is present in the parameter file, association-based conflict resolution analysis will be
performed. Default is FALSE.

A.1.4 Verbose Level Parameters (GAassoc)

global_verbose:

Level of verbosity for overall GAassoc analysis. The level of detail increases as the value
increases by integer steps from 0 (no printed output) to 4 (all output printed). A level of 1 is rec-
ommended for general run-time purposes. The highest level, 4, is only intended for debugging.
Default is 1.

assoc_verbose:
Level of verbosity for main association processing. The level of detail increases as the value
increases by integer steps from O (no printed output) to 4 (all output printed). Default is 0.

ev_verbose:
Level of verbosity for event confirmation screening. The level of detail increases as the value
increases by integer steps from O (no printed output) to 4 (all output printed). Default is O.

cr_verbose:

Level of verbosity for conflict resolution analysis. The level of detail increases as the value
increases by integer steps from O (no printed output) to 4 (all output printed). A level of 2 is par-
ticularly useful when trying to understand why an event was removed due to conflict resolution.
The highest level, 4, is only intended for debugging. Default is O.

loc_verbose:
Level of verbosity for printed locator output. The level of detail increases as the value increases
by integer steps from O (no printed output) to 4 (all output printed). One will usually not want to

look at specific locator output unless the user has some particular interest in the behavior of a sin-
gle event location. Default is 0.

A.2 GAconflict parameters
A.2.1 Database Interface and Input Files Parameters

gdihome:
Root directory location of GDI (Generic Database Interface) installation. Default is set based on
the GDI_HOME environment variable.

vendor:
Name of the database vendor (e.g., “oracle”). Default is NULL.

server:
Name of the database server. Default is NULL.

constr:

Page 38

Type of database tuple constructor. Default is NULL.

database:

Name of the device where the database is located (e.g. “t:skrymir:dev6037”). Defaults to the set-
ting defined in the user environment (e.g. TWO_TASK environment variable). Required.

account:
Database account name for input arrival table and output assoc, origin and origerr tables.

Required.

maxrecs:
Maximum number of records to fetch from the database. If -1, all records will be returned.

Default is 30000.

in-arrival-table:

Name of the input database table where the input arrival tuples are located. This table (arrival)
contains the necessary raw event phase data information required to do conflict resolution and
event location. Required.

in-assoc-table:
Name of the input database table where the input assoc tuples are located. Required.

in-origin-table:
Name of the input database table where the input origin tuples are located. Required.

in-origerr-table:
Name of the input database table where the input origerr tuples are located. Required.

out-origin-table:
Name of the database table where the output origin tuples will be written upon successful process-
ing of events in GAconflict. Required.

out-assoc-table:
Name of the database table where the output assoc tuples will be written upon successful process-
ing of events in GAconflict. Required.

out-origerr-table:
Name of the database table where the output origerr tuples will be written upon successful pro-
cessing of events in GAconflict. Required.

net:
Name of unique seismic network identifier (e.g., GSETT3). Required.

table_path:
Directory and prefix for the travel-time and magnitude distance/depth correction tables. Required.

atten_file:
Directory and file name for the location of the attenuation tables used for probability of detection
calculations. Required.

mb_dist_depth_suffix:

Page 39

File name suffix for Mb distance/depth dependent magnitude corrections. Required.
start_time:
Epoch time at which to gather arrivals to begin analysis. Required.

end_time:
Epoch time at which to end analysis. Required.

phases:
List of acceptable phaseids to be used in the main association loop (e.g., “P,PKPdf,S,Pn,Lg,PcP”).
This must be a subset of the phases used in GAcons. Required.

primary_phases:

List of acceptable “primary” phaseids to be used in the event confirmation process (e.g.,
“P,PKPdf,Pn”). Primary phases are given a weighting within event confirmation set by
primary_time_weight. This list must be a subset of the list specified by phases. Required.

A.2.2 Optional Processes Parameters

redundancy._required:
If this string is present in the parameter file, a complete redundancy test is performed after the
association loop. This is done in the normal operating mode. Default is FALSE.

do_clustering:
If this string is present in the parameter file, clustering analysis will be performed. Default is
FALSE. ‘

do_association_based_conflict_resolution:
If this string is present in the parameter file, association-based conflict resolution analysis will be
performed. Default is FALSE.

A.2.3 Verbose Level Parameters (GAconflict)

global_verbose:

Level of verbosity for overall GAconflict analysis. The level of detail increases as the value
increases by integer steps from O (no printed output) to 4 (all output printed). A level of 1 is rec-
ommended for general run-time purposes. The highest level, 4, is only intended for debugging.
Default is 1.

ev_verbose:
Level of verbosity for event confirmation screening. The level of detail increases as the value
increases by integer steps from O (no printed output) to 4 (all output printed). Default is O.

cr_verbose:

Level of verbosity for conflict resolution analysis. The level of detail increases as the value
increases by integer steps from O (no printed output) to 4 (all output printed). A level of 2 is par-
ticularly useful when trying to understand why an event was removed due to conflict resolution.
The highest level, 4, is only intended for debugging. Default is O.

loc_verbose:

Page 40

Level of verbosity for printed locator output. The level of detail increases as the value increases
by integer steps from O (no printed output) to 4 (all output printed). One will usually not want to
look at specific locator output unless the user has some particular interest in the behavior of a sin-
gle event location. Default is O.

A.3 Shared Modules Parameters

A.3.1 Network Probability Parameters

residual_over_sigma_max:

Maximum value of the ratio of the residual of the network probability value to the estimated stan-
dard deviation. This parameter is used in both probability of detection tests (before and after loca-
tion). The default is 3.0.

max_obs_net_prob:

Maximum number of observations above which no probability of detection test is applied. This
value and the value of the residual_over_sigma_max parameter are used by both the pre-location
and post-location probability of detection tests. The default is 10.

A.3.2 Location and Confirmation Module Parameters.

loc_conf_level.
Locator confidence level. This is the confidence level at which the location error ellipse is com-
puted. The default is 0.90.

loc_fix_depth:
If this string is specified, the locator keeps the depth fixed. The default is TRUE.

chi_outlier.

Chi-square threshold value used in the post-location outlier analysis within the locator module.
This value is used to determine whether an arrival is an outlier for a particular event and to discard
it from the preliminary event if it is the worst outlier. The default is 0.99.

max_smajax.
Maximum permissible semi-major axis of the location error ellipse. This is one of the confirma-
tion criteria for a preliminary event. The default is 1000.0.

req_num_of_defining_detections:
Minimum number of defining detections for an event to be confirmed. The default is 3.

weight_threshold:

Minimum “weight” of an event for it to be confirmed. This is compared to the sum of all weights
for the defining observations forming the event (see primary_time_weight,
secondary_time_weight, array_azimuth_weight, array_slow_weight, 3comp_slow_weight,
3comp_azimuth_weight). This weighted-count confirmation test is described by Bratt et al.
[1991, 1994]. The default is 3.9.

primary_time_weight.

Page 41

Weight assigned to arrival times for primary phases for the weighted-count event confirmation
test [Bratt et al., 1991, 1994]. The default is 1.0.

secondary_time_weight:
Weight assigned to arrival times for secondary phases for the weighted-count event confirmation
test [Bratt et al., 1991, 1994]. The default is 0.7.

array_azimuth_weight.
Weight assigned to array azimuths for the weighted-count event confirmation test [Bratt et al.,
1991, 1994]. The default is 0.5.

array_slow_weight.
Weight assigned to array slowness for the weighted-count event confirmation test [Bratt et al.,
1991, 1994]. The default is 0.5.

3comp_slow_weight:
Weight assigned to slowness from 3-component data for the weighted-count event confirmation
test [Bratt et al., 1991, 1994]. The default is 0.25.

3comp_azimuth_weight.
Weight assigned to azimuth from 3-component data for the weighted-count event confirmation
test [Bratt et al., 1991, 1994]. The default is 0.25.

A.3.3 Cluster Analysis Parameters

cluster_min_ndef:
Minimum number of defining phases a preliminary event must possess to be clustered. The clus-
tering algorithm is not applied to smaller events. The default is 6.

cluster_min_pct_overlap: :
Minimum ratio of overlap that must exist for an association set to be included in a cluster. Valid
values are 0.0 to 1.0. The default is 0.80.

A.3.4 Association-based Conflict Resolution Parameters
master_tradeoff_weight:
Weighting factor which controls the relative weighting between event quality and goodness-of-fit

in the quality measure. The default is 0.2.

event_likelihood_weight:
Weighting factor for the event likelihood in the event quality factor. The default is 1.0.

dissolved_event_weight:
Weighting factor for the term in the event quality factor that is concerned with the likelihood that
an event will be dissolved. The default is O.1.

ndef_not_likely_to_dissolve_event:
Number of defining data above which it is unlikely that removing 1 arrival will dissolve (destroy)

Page 42

an event. The default is 6.

ndef_which_will_dissolve_event:
Number of defining data below which it is likely that removing 1 arrival will dissolve (destroy)
the event. The default is 3.

ndef_weight:
Weighting factor for the number of defining data (ndef) component of the event likelihood mea-
sure. The default is 1.0.

Smajax_weight:
Normalized weight applied to semi-major axis of error ellipse (Smajax) component of the event
likelihood measure. The default is 0.8.

dnear_weight:
Normalized weight applied to distance to nearest station component of the event likelihood mea-

sure. The default is 0.5.

probdet_weight:
Normalized weight applied to event probability of detection component of the event likelihood
measure. The default is 0.7.

ndef_no_confidence_bound:
Number of defining data below which we ascribe a very low confidence in the preliminary event.
The defaultis 3.

ndef_high_confidence_bound:
Number of defining data above which we ascribe a very high degree of confidence in the prelimi-
nary event. The default is 10.

smajax_no_confidence_bound:
Size of semi-major axis of error ellipse (km) beyond which we ascribe a very low confidence in
the preliminary event. The default is 500.0.

smajax_high_confidence_bound:
Size of semi-major axis of error ellipse (km) below which we ascribe a very high degree of confi-
dence in the preliminary event. The default is 10.0.

dnear._no_confidence_bound:
Distance to nearest station (deg) beyond which we ascribe a very low confidence in the prelimi-

nary event. The default is 90.0.

dnear_high_confidence_bound:
Distance to nearest station (deg) below which we ascribe a very high degree of confidence in the

preliminary event. The default is 10.0.
probdet_no_confidence_bound:

Network probability of detection, measured as residual/sigma, above which we ascribe a very low
confidence in the preliminary event. The default 1s 3.0.

Page 43

probdet_high_confidence_bound:
Network probability of detection, measured as residual/sigma, below which we ascribe a very
high degree of confidence in the preliminary event. The default is 1.0.

A.4 Sample Parameter files
Sample GAassoc parameter file:

vendor="oracle”
database="t:machine:two_task”
account="account_name/password”
maxrecs=200000
in-arrival-table="arrival’
in-assoc-table="assoc”
in-origin-table="origin”
in-origerr-table="origerr”
out-origin-table="origin_ga”
out-assoc-table="assoc_ga”
out-origerr-table="origerr_ga”
minimum_ml_previously_determined=2.5
atten_file="slowamp.P”
table_path="/data/tab”
mb_dist_depth_suffix="pfact”
input_path="/home/ga/SDG”
input_file="GSETT3.spacing3.sector.-180deg.to.180deg”
num_first_sta=5

count_limit=10000
forward_transformation_list="(P PKPdf Pdiff Pn S ScP PKPab PKPbc PP ScS),(S Rg Sn
Lg),(Pn P Pg Pdiff S ScS),(Lg Sn Rg),(Sx Sn Lg Rg S ScS),(Tx PcP PKPbc PKPab),(Rg
Lg).(SnLg §)”
phases="Pg,Pn,P,Pdiff, PKPdf”
primary_phases="P,PKPdf,Pn,Pg,Pdiff’
freeze_arrivals_at_beam_points
primary_required_for_secondary
regional_S_phases="Sn,Lg,Rg,Sx”
sigma_time=3.

sigma_slowness=3.
start_time=789004800.
end_time=789033600.

chi_limit=.99

#

#optional processes parameters
#

#probdet_before_location
redundancy_required
probdet_after_location
do_clustering

Page 44

do_association_based_conflict_resolution
#

#location parameters

#

loc_conf_level=0.90

loc_verbose=0

loc_fix_depth

chi_outlier=.99

#

Event confirmation criteria

#

max_smajax=500.0
residual_over_sigma_max=3.
max_obs_net_prob=10
req_num_of_defining_detections=3
weight_threshold=3.9
primary_time_weight=1.0
secondary_time_weight=1.0
array_azimuth_weight=0.25
array_slow_weight=0.25
3comp_slow_weight=0.0
3comp_azimuth_weight=0.0

#

Cluster analysis parameters

-

cluster_min_ndef=6
cluster_min_pct_overlap=0.8

#

Association-based conflict resolution parameters
#

master_tradeoff_weight=0.2
event_likelihood_weight=1.0
dissolved_event_weight=0.1
ndef_not_likely_to_dissolve_event=6
ndef_which_will_dissolve_event=3
ndef_weight=1.0

smajax_weight=0.8
dnear_weight=0.5
probdet_weight=0.7
ndef_no_confidence_bound=3
ndef_high_confidence_bound=10
smajax_no_confidence_bound=500.0
smajax_high_confidence_bound=10.0
dnear_no_confidence_bound=90.0
dnear_high_confidence_bound=10.0
probdet_no_confidence_bound=3.0
probdet_high_confidence_bound=1.0

Sample GAconflict parameter file:

vendor="oracle”
database="t:machine:two_task”
account="account_name/password”’
maxrecs=200000
in-arrival-table="arrival_ga”
in-assoc-table="assoc_ga”
in-origin-table="origin_ga”
in-origerr-table="origerr_ga”
out-origin-table="origin_final”
out-assoc-table="assoc_final”
out-origerr-table="origerr_final”
atten_file="slowamp.P”
table_path="/data/tab”
mb_dist_depth_suffix="pfact”
phases="Pg,Pn,P,Pdiff, PKPdf”
primary_phases="P,PKPdf,Pn,Pg,Pdiff’

start_time=789004800.
end_time=789033600.

#

#optional processes parameters

redundancy_required
do_clustering
do_association_based_conflict_resolution
#

#location parameters

#

loc_conf_level=0.90
loc_verbose=0

loc_fix_depth

chi_outlier=.99

#

Event confirmation criteria
#

max_smajax=500.0
residual_over_sigma_max=3.
max_obs_net_prob=10
req_num_of_defining_detections=3
weight_threshold=3.9
primary_time_weight=1.0
secondary_time_weight=1.0
array_azimuth_weight=0.25
array_slow_weight=0.25
3comp_slow_weight=0.0
3comp_azimuth_weight=0.0

Page 46

#

Cluster analysis parameters
#

cluster_min_ndef=6
cluster_min_pct_overlap=0.8
#

Association-based conflict resolution parameters

#

master_tradeoff_weight=0.2
event_likelihood_weight=1.0
dissolved_event_weight=0.1
ndef_not_likely_to_dissolve_event=6
ndef_which_will_dissolve_event=3
ndef_weight=1.0

smajax_weight=0.8
dnear_weight=0.5
probdet_weight=0.7
ndef_no_confidence_bound=3
ndef_high_confidence_bound=10
smajax_no_confidence_bound=500.0
smajax_high_confidence_bound=10.0
dnear_no_confidence_bound=90.0
dnear_high_confidence_bound=10.0
probdet_no_confidence_bound=3.0
probdet_high_confidence_bound=1.0-

AFTAC/TTR
AFTAC/TTS
CA/STINFO

Distribution List

Technical Report (2 copies)
Technical Report (1 copy)
Technical Report (2 copies)

